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SUMMARY 
The primary aim of this work was to determine the simplest and most effective parallelization strategy for 
control-volume-based codes solving industrial problems. It has been found that for certain classes of 
problems, the coarse-grain functional decomposition strategy, largely ignored due to its limited scaling 
capability, offers the potential for significant execution speed-ups while maintaining the inherent structure of 
traditional serial algorithms. Functional decomposition requires only minor modification of the existing 
serial code to implement and, hence, code portability across both concurrent and serial computers is 
maintained. Finc-grain parallelization strategies at the ‘DO loop’ level are also easy to implement and 
largely preserve code portability. Both coarse-grain functional decomposition and fine-grain loop-level 
parallelization strategies for the SIMPLE pressure correction algorithm are demonstrated on a Silicon 
Graphics 4D280S eight CPU shared memory computer system for a highly coupled, transient two- 
dimensional simulation involving melting of a metal in the presence of thermal-buoyancy-driven laminar 
convection. Problems requiring the solution of a larger number of transport equations were simulated by 
including further scalar variables in the calculation. While resulting in slight degradation of the convergence 
rate, the functional decomposition strategy exhibited higher parallel efficiencies and yielded greater speed- 
ups relative to the original serial code. Initially, this strategy showed a significant degradation in conver- 
gence rate due to an inconsistency in the parallel solution of the pressure correction equation. After 
correcting for this inconsistency, the maximum speed-up for 16 dependent variables was a factor of 5.28 with 
eight processors, representing a parallel efficiency of 67%. Peak efficiency of 76% was achieved using five 
processors to solve for 10 dependent variables. 

KEY WORDS Computational fluid dynamics Parallel computing Parallel processing Functional decomposition 
SIMPLE algorithm Pressure correction schemes 

1. INTRODUCTION 

Parallel processing offers the potential for near real-time execution of Computational Fluid 
Dynamics (CFD) codes simulating real-world industrial problems. To date, efforts to achieve 
high performance in parallel implementations have often concentrated on arrays of inexpensive 
processors using domain decomposition techniques,’ largely ignoring functional decomposition 
as a technique requiring code that in many cases is unable to take full advantage of machine 
parallelism. The speed-ups achievable using functional decomposition are constrained by prob- 
lem-specific details. How many different tasks can be performed independently of one another? 
This makes the number of CPUs usable strictly limited. However, functional decomposition does 
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have the advantages of ease of application and largely maintaining the integrity of traditional 
serial algorithms. It can also be transferred without difficulty between different machines as its 
application generally does not require extensive modification of the solution algorithm, unlike 
other parallelization strategies such as domain decomposition methods. 

For certain classes of problems, functional decomposition has been shown to be an effective 
parallelization strategy for execution on a project supercomputer class machine. These problems 
are, generally, governed by a comparatively large number of transport equations. Areas of specific 
interest lie in the modelling of the ironmaking blast furnace,’ which involves the solution of over 
15 dependent variables, including highly coupled systems of chemical reactions and multiphase 
flows. Other applications of interest include modelling of near net shape casting metal delivery 
systems,334 and continuous casting operations5 which require three-dimensional simulation of 
fluid flows with heat transfer and solidification mechanisms. 

Functional decomposition offers a straightforward method of problem partitioning that can be 
easily implemented in segregated solution algorithms. Good parallel efficiencies are obtainable 
when load balance is reasonable. In this work, the use of two functional decomposition strategies 
for the solution of the Navier-Stokes equations in their primitive variable form using the 
SIMPLE pressure correction algorithm is described. The original serial algorithm is described 
briefly. and the development of a concurrent strategy outlined. A standard, fully conservative 
control-volume-based numerical scheme’ is used for all calculations. Degradation in the conver- 
gence rate was observed when the pressure correction equation was solved inconsistently in one 
of the functional decomposition strategies. 

The coarse-grain functional decomposition approach is contrasted with fine-grain or loop-level 
parallelization. In this approach both coefficient assembly and solution of the transport equations 
are parallelized by spreading execution of DO loop iterations over several CPUs. Standard 
red-black ordering6 is used for parallelization of the line-by-line Tri-Diagonal Matrix Algorithm 
(TDMA) solver.’ 

These strategies are demonstrated by solving a highly coupled, transient two-dimensional heat 
transfer and fluid flow problem. This simulation is numerically intensive and is representative of 
the class of problems presently under investigation. The effect on parallel efficiency of increasing 
the number of transport equations is simulated by multiple solution of a scalar transport 
equation. Since the additional equations introduced are uncoupled, this will give an upper bound 
on the speed-up obtainable for the functional decomposition strategies. Any coupling between 
additional transport equations would tend to reduce the rate of convergence to a greater degree 
for functionally decomposed code than for the original serial code. This is because the concurrent 
solution of several transport equations leads to their being ‘decoupled in time’, newly computed 
values of variables not being fed into the solution of subsequent equations as occurs in serial 
implementations. 

2. SERIAL IMPLEMENTATION OF THE SIMPLE PRESSURE CORRECTION 
ALGORITHM 

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is based on 
a pressure correction scheme. The reader is referred to Patankar’ for details of the algorithm 
derivation. The SIMPLE algorithm is implemented using a fully conservative control-volume- 
based finite-difference scheme’ and the QUICK scheme of Leonard,’ with flux limiting after 
Gaskell and Lau,’ for representing convective transport terms. The solid/liquid phase change is 
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accommodated using the enthalpy porosity approach.'" Note that the notation and conventions 
of Patankar7 are used in this paper. 

The analysis of a two-dimensional coupled heat transfer and fluid flow problem requires the 
simultaneous solution of two momentum equations, a continuity equation and an energy 
equation. Note that many industrial problems may require the solution of additional dependent 
variables such as concentration of chemical species. For example, a comprehensive two-dimen- 
sional CFD model of a blast furnace ironmaking operation' requires the simulation of a multi- 
tude of chemical reactions and the solution of over 15 dependent variables. These include 
chemical species in addition to the momentum and energy transport equations. It is in the 
segregated solution of problems such as this which involve a large number of transport variables 
that functional decomposition becomes an attractive parallelization strategy. 

For each of the dependent variables considered, the governing convection/diffusion transport 
equation is of the general form (for dependent variable 4)7 

(1) 
a 
- (p$)+div(puZh)=div(rgrad4)+S, 
d t 

where r is the diffusion coefficient and S is the source term. 

discretization equation at the ith grid point of the form7 
The governing differential equation by integration over a control volume yields the general 

a i 4 i = % b $ n b  +b, (2) 

where the nb subscripts refer to the neighbouring points to the ith point. 
In the segregated solution methodology inherent in the SIMPLE algorithm, the dependent 

variables are effectively decoupled and solved for independently. For each dependent variable, 
a separate system of linearized algebraic equations is derived with coefficients assembled from the 
velocity fields and diffusion coefficients. 

The sequence of operations in the SIMPLE algorithm is, after Patankar:7 

1. 
2. 
3 .  
4. 
5 .  
6. 

7. 

8. 

Guess the pressure field. 
Solve the momentum equations (separately for each component of velocity). 
Solve the pressure correction equation. 
Calculate the pressure field from the pressure correction. 
Correct the velocity fields. 
Solve the discretization equations for any other variables (such as temperature and turbu- 
lence quantities) that influence the flow field, e.g. through fluid properties. (Otherwise 
calculate them after a converged solution for the flow field is obtained). 
Treat the corrected pressure as a new guess, return to step 2 and repeat until convergence is 
reached. 
If the problem is transient step forward in time and repeat. 

For a two-dimensional, laminar, coupled heat transfer and fluid flow problem, the sequential 
form of the SIMPLE algorithm is shown in Figure 1. The specific governing equations for the two 
velocity components, mass conservation and energy are 

(3) 
a ap 
- (3 t (pu)+div(puu)=div(pgrad u)--+S,, ax 
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where 

where 

In this fully sequential version of the algorithm, the coefficients for each dependent variable are 
calculated using the latest values available for all other variables. For example, the coefficients for 
the u-momentum equation are calculated using previous iteration values of u, P and T, and newly 
calculated values of u. Similarly, the coefficients for the energy equation are calculated using the 
newly calculated present iteration values of both u and u. While assembling the coefficients for 
a particular variable, the fully sequential form of the algorithm is, thus, able to utilize the most 
recently calculated values of all the other variables. Note in Figure 1 that this effect 'cascades' 
down the solution sequence and that progressively less previous iteration fields (denoted by *) are 
used in coefficient calculation as the end of an iteration is neared. The final transport equation to 
be solved, in this case the energy equation, is, thus, able to utilize newly calculated fields for both 
u and u. This use of the most up-to-date data when solving each transport equation accelerates the 
rate of convergence of the algorithm. 

The solution of each system of algebraic discretization equations may proceed in a number of 
ways. Direct methods such as Gaussian elimination are generally prohibitively costly in terms of 
computer resources and, hence, iterative methods are widely used. For this implementation, 
a combination of the Gauss-Seidel method7 and the direct Tri-Diagonal Matrix Algorithm 
(TDMA) was used by employing the TDMA on a line-by-line basis as described by Patankar. 
The line-by-line sweeping was repeated in each of the co-ordinate directions within a single pass 
of the solving routine, similar to the AD1 method of Peaceman and Rachford.'l Each pass of the 
solving routine was augmented by a block correction procedure." The whole procedure was 
performed iteratively, updating coefficients at each iteration. 

Functional decomposition parallelizes the execution of the algorithm by placing the coefficient 
assembly and solution of a system of equations for a given dependent variable on a separate CPU. 
This becomes an economic method of utilizing machine parallelism when the number of transport 
equations approaches or exceeds the number of available CPUs. Maximum gains will be 
obtained when the number of transport equations matches the number of CPUs exactly. 

In contrast, the loop-level parallelization strategy spreads execution of DO loop iterations in 
coefficient assembly and equation solution over all available CPUs. This easily utilizes as much of 
the computer as may be devoted to the problem and is readily scalable, the addition of more 
CPUs leading to immediate gains in execution speed. There is a limit to this characteristic in that 
no more CPUs can be used than there are iterations in the typical program DO loop. For 
real-world problems, however, this limit generally exceeds the CPUs available in machines of 
small to moderate parallelism. 

The Thomas algorithm involves calculation of recurrence relations, making loop level parallel- 
ization impossible within each TDMA traverse. In addition, the line-by-line method of 'sweeping' 
the TDMA across the problem domain renders it in its simplest form inherently unparallelizable. 
However, red-black ordering6 of the TDMA line-by-line technique allows concurrent calcu- 
lation. 
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3. CONCURRENT IMPLEMENTATION--FUNCTIONAL DECOMPOSITION 

3. I .  Functional decomposition strutegy I- independent solution of momentum and pressure correc- 
tion equations 

It should be recognized that functional decomposition strategy I (see Figure 2) is not a rigorous 
implementation of the true SIMPLE ~cherne .~  Although this strategy results in a relatively severe 
penalty in convergence rate, it still offers the potential for significant computational speed-ups for 
certain problems. In this strategy, the u, 11, P' and T equation are solved for independently on 
separate processors. The coefficients for the u, v and Tequations are calculated using the previous 
iteration fields u*, v* and T*. Calculation of the coefficients for the P' equation also requires 
using the previous iteration values of the coefficients for the u and v equations. The velocity and 
pressure corrections are made only after solving for u, t', P' and T. This results in an inconsistency 
in that the calculated pressure corrections are being applied to the new u and z' fields, rather than 
to the previous iteration u* and ti* fields which were actually used to calculate the pressure 
corrections. This inconsistency results in the loss of one of the convergence-promoting character- 
istics of the SIMPLE algorithm, namely, that convergence is approached through a series of 
continuity-sastisfying velocity  field^.^ Note, however, that as convergence is neared, this incon- 

Y,W,y*,P,F FIELD 
AT PRESENT ITERATION 

Four parallel execution 

USING Y,V',P,P USING V,V,P,T* USING w,w,P,r USING W,W,P,F 

AND SOLVE FOR U 
CALCULATE COEFF.3 CALCULATE COEFF.'S CALCULATE COEFF.'S CALCULATE COEFF.3 

AND SOLVE FOR V AND SOLVE FOR P' 

Note that previous iteration 
fields are used in Calculating 
coefficients of all variables 

NEWVELOCITY FIELDS U,V 

SET w = u, w= v,  
P = P, P= T, MC. 

NO 
CONVERGED? 

J 

Figure 2. Functional decomposition strategy I- Independent solution of momentum and pressure correction equations 
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sistency disappears because the previous iteration values and newly calculated values approach 
each other. Although a certain degree of degradation in the convergence rate may be expected 
using this strategy, this can be offset by the increase in computational speed arising from the fact 
that the pressure correction equation is being solved at the same time as all the other dependent 
variables. 

3.2. Functional decomposition strategy 11-independent solution of momentum equations followed 
by sequential solution of pressure correction equation 

Functional decomposition strategy TI maintains the integrity of the SIMPLE algorithm by 
treating the solution of the pressure correction equation as a sequential operation after solving 
the u and u equations (see Figure 3). The previous iteration fields u*, u* and T* are used in 
calculating coefficients for the velocity and energy equations. These variables are solved for 
independently on separate processors, after which the updated u and u fields, along with the 
updated velocity equation coefficients, are used in the calculation of the pressure correction 
coefficients. After solving the pressure correction equation, the velocities and pressures are 
corrected using the pressure correction field. This strategy, therefore, ensures that the pressure 
corrections being applied to correct the velocities are fully consistent with these velocities and 
that convergence is again approached through a series of continuity-satisfying velocity fields. 
A slight degradation in convergence rate over the fully sequential scheme shown in Figure 1 may 
still be expected, however, as the previous iteration values of all variables must be used to 
calculate the coefficients of all transport equations except the pressure correction equation for the 
present iteration. 

4. CONCURRENT IMPLEMENTATION-LOOP-LEVEL PARALLELIZATION 

The loop-level parallelization strategy spreads execution of DO loop iterations in coefficient 
assembly and equation solution over all available CPUs. Parallelization of the coefficient 
assembly is straightforward, but modifications are required to the line-by-line iterative solver. 
Each grid line in a particular co-ordinate direction is solved sequentially. The values of the 
dependent variable being solved on the neighbouring lines are held to be the ‘latest’ values and 
constant during performance of the TDMA, and the values along the chosen line solved by the 
TDMA. The direction of traverse is changed so that the problem domain is swept in all four 
directions. 

As mentioned earlier, calculation of the recurrence relations within the TDMA algorithm 
prohibits loop-level parallelization within each traverse. When attempting to introduce loop- 
level parallelism on a line-by-line basis, the assumption that values on neighbouring lines are 
constant introduces problems due to the non-deterministic updating of values in memory due to 
concurrent processing. Neighbouring lines are treated separately by different processes and, so, 
exactly when neighbouring values have been, or are to be, updated is unknown. 

This problem is easily overcome by modifying the sweeping TDMA solver to use standard 
red-black ordering of the linesS6 The stride through the loop performing the traverse of lines was 
changed to two, and the loop performed twice from two adjacent starting lines. In this way, every 
line is processed but, during any pass through the loop, every line solved has constant neighbours. 
This is shown diagramatically in Figure 4. The solution of lines within a loop can, thus, be safely 
performed concurrently. 
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during a single pass 'i' I 

Figure 4. Red-black ordering of loop iteration 

In addition, loop-level parallelization was implemented throughout the remainder of the code, 
consisting mainly of coefficient formulation and source term calculation. There were no inherent 
obstacles to parallelization in these tasks. 

5. TEST PROBLEM 

The two-dimensional melting of gallium in the presence of laminar thermal-buoyancy-driven 
convection was used as a benchmark problem to test the various parallelization strategies. This 
problem has previously been numerically investigated by Brent et aL9 and was chosen as it may 
be considered typical of coupled, non-linear CFD problems which are computationally intensive. 
The governing equations specific to this problem are equations (3)-(6). 

Note that the Boussinesq approximation is used in modelling the buoyancy term. The 
geometry, boundary and initial conditions for the problem are shown in Figure 5. Further details 
such as the physical properties used for gallium may be found in Reference 9. 

The early stages of melting were simulated. Computations were carried out up to a simulation 
time of 50 s using a constant time step of 0.5 s. The non-uniform computational grid of 24 x 40 
control volumes used is shown in Figure 6. A fine grid is required in the fluid regions to resolve 
steep velocity and temperature gradients and essentially isothermal conditions exist ahead of the 
melt front. The melt front and streamlines at 50 s are plotted in Figure 7, indicating the complex 
flow structure arising. 
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Figure 5. Benchmark problem description 
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Figure 6. Computational mesh 
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Figure 7. Melt front and streamlines at 50 s 

6. RESULTS AND DISCUSSION 

6.1. Load balance projiling 

The Silicon Graphics 280s f77 FORTRAN compiler profiling option was used on the 
benchmark problem to generate profile reports to indicate relative proportions of CPU time 
spent on different operations. A number of profiles were generated to examine various aspects of 
CPU requirements. The first of these profiles gives an indication of the proportions of CPU time 
spent solving for each transport equation and is shown in Table I. It should be noted that all 
profiling runs were conducted without any other users on the SGI 280s system and, hence, CPU 
clashes with other jobs (apart from the system accounting which is insignificant) were avoided. 

Table I. Profile giving breakdown of CPU requirements by 
dependent variable 

Dependent variable 

Proportion of CPU 
time spent 

of each variable 

u-velocit y 
v-velocity 
Pressure correction P' 
Temperature 
Totals 

27 % 
29 '/o 
17% 
27 % 

100 Yo 
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It can be seen from Table I that solution of the pressure correction equation requires 
significantly less computational effort than does the solution of the other transport equations. 
This imbalance arises because calculation of the pressure correction equation coefficients does 
not require computation of the flux-limited QUICK convective differencing terms. The small 
discrepancies in computational requirements for coefficient calculation of the other dependent 
variables result from differences in source term calculations; for example, the calculation of the 
Boussinesq buoyancy source term for the v-equation results in the o-equation requiring more 
CPU time in coefficient calculation than the u-equation (29% compared to 27%). Table II shows 
the proportion of total CPU time spent on the tasks of coefficient assembly and matrix solution 
for all the variables. 

Note that approximately 39% of the computational effort is used in the solution of the linear 
discretization equations (i.e. in the TDMA line-by-line solver). The remaining CPU time, 
approximately 7% involves convergence checking of heat and mass balance, enthalpy updates 
for phase changes and like tasks. 

6.2. Speed-up analysis 

Amdahl’s Lawi3 can be used to determine the maximum theoretical speed-up for different 
parallelization strategies. Although the maximum theoretical speed-up can generally not be 
attained in practice due to system overheads, it is a useful tool in evaluating parallelization 
strategies. Amdahl’s Law states 

where t,  is the sequential run-time, t, the parallel run-time, F, the sequential portion of the code, 
Fp the parallel portion of the code and IZ the number of processors used. 

Note that, although machines with large numbers of processors may be valuable, some 
parailelization strategies restrict the number of processors which can be used. For example, 
functional decomposition strategy I1 allows the use of only three CPUs (one each for u, u and 
T-equations). The maximum theoretical speed-up attainable for different parallelization strat- 
egies are given in Table 111. Note that this analysis assumes that no change occurs in convergence 
rates for different implementations. 

Profiles of execution indicated that some 90% of the code was parallelized in the loop-level 
implementation and this is reflected in the speed-up shown in Table 111. It should be recognized 
that the values in Table I11 apply only to the benchmark problem in which u, z’, P‘ and Tare the 
only transport equations being solved. When a problem incorporates a large number of depend- 

Table 11. Proportion of total CPU time required for coefficient assembly 
and line-by-line solver for benchmark problem 

Operation Proportion of total CPU time 

Coefficient and source term 
calculation for all variables 
Iterative solution of discretization 
equations for all variables (four- 
sweep line-by-line TDMA solver 
with block correction) 

54 Yo 

39% 
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Table 111. Maximum theoretical speed-ups for different parallelization strategies 

Number of CPUs Maximum theoretical 
Parallelization strategy used speed-up 

Strategy I 
Strategy I1 
Loop level 

4 
3 
8 

3.41 
2.48 
4.14 

Table IV. Summary of results for parallelization strategies compared to sequential 
code for benchmark problem 

Code 

Average 
Elapsed number of Total CPU Zystem 

time iterations per time overhead 
(4 timestep (4 (4 

Fully sequential 483 24.4 483 1 
Loop level 220 25.0 1567 35 
Strategy I 312 29.0 1027 274 
Strategy I1 256 25.9 784 29 

ent variables (e.g. the blast furnace model2), the theoretical speed-up for strategies I and TI may be 
expected to be significantly higher. 

6.3. Comparison of results for functional decomposition 

Table IV contains a summary of the results obtained for both functional decomposition 
parallelization strategies I and TI and the results obtained running a fully sequential code on 
a single CPU of a SG280S. 

Simulation of the benchmark problem on a fully sequential code (see Figure 1 for sequential 
SIMPLE) took 483 CPU seconds and an average of 24.4 iterations to reach convergence at each 
time step. Note that the CPU time is equivalent to the elapsed time in this case as only one CPU is 
used. The total CPU time for the loop-level parallelized code includes loop-scheduling overheads. 
The classical definition of efficiency of a parallelization strategy, as shown by Akl,14 is 

Sequential run-time 
Parallel run-time x n ’ 

Efficiency = 

where n is the number of processors and the denominator gives the ‘cost’ of the parallel algorithm. 
Strategy I gave a speed-up relative to the sequential code of 1.55. This implementation, thus, 

yielded only 45% of the theoretical maximum speed-up given by Amdahl’s law (see Table 111) and 
had an efficiency of only 39%. The poor performance of this strategy is due to the significant 
degradation in convergence rate (19% more iterations than the fully sequential code). This 
decrease in convergence rate is primarily the result of the inconsistency in the velocity corrections 
discussed above. 

Strategy I1 gave a speed-up of 1.89, which is 76% of the theoretical maximum. The efficiency of 
this strategy is 63%. Note that only a slight degradation in convergence rate was noted using this 
strategy, with only 6% more iterations being required for convergence within each time step. The 
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Figure 8. Maximum mass residuals for functional decomposition strategies at timestep 82 

improved load balancing in this implementation also results in considerably lower system 
overheads than in strategy I. 

The rates of convergence of the two functional decomposition strategies and the sequential 
code are compared for a typical timestep involving significant velocity fields in Figure 8. Note 
that convergence testing was performed only from the fifth iteration to ensure a minimum of five 
iterations per timestep. The Convergence criteria were a maximum local mass imbalance of less 
than 3.0 x 10- 3% of the total mass present in the cavity and an absolute error in the unsteady 
heat balance of less than 0.05%. The maximum local mass imbalance is derived from the mass 
source term, given by’ 

b = ( PU, - PU,)AY + ( P V ,  - p u n ) A ~ -  (14) 

It may be noted that strategy I shows significant oscillatory behaviour caused by the inconsist- 
ent application of pressure corrections. As a result, the velocity fields no longer satisfy continuity 
at the end of each iteration. Strategy 11, in which this problem was resolved, shows near 
monotonic decrease in residual imbalance. 

The iterations required to reach convergence at each timestep for the entire simulation are 
compared in Figure 9. 

In Figure 9 it can be seen that the solution of the test problem proceeds through three distinct 
phases. Up to about timestep 20, a significant number of iterations are required at each timestep 
to resolve the high temperature gradients and rapid melting near the left wall. During this phase, 
the problem is essentially a classical Neumann problem. Between timesteps 20 and 50, the 
problem is still heat-conduction-dominated since fluid flow is constrained by the small size of the 
liquid volume. However, temperature gradients are smaller than those encountered within the 
first 20 timesteps and, hence, fewer iterations are required to reach convergence. As melting 
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Figure 9. Iterations required for convergence for functional decomposition strategies 

proceeds, buoyancy forces accelerate fluid motion and the number of iterations required for 
convergence increases to resolve the complex, transient flow structures arising. 

The pressure correction inconsistency in strategy I is also evident from Figure 9. It can be seen 
that while strategy I is similar in performance to the other strategies when the problem is 
conduction-controlled, as the fluid flow becomes more significant it requires considerably more 
iterations. The effect of increasing iterations also becomes apparent earlier than for the other 
strategies. 

From this evidence and for the reasons stated earlier, strategy I could be expected to experience 
convergence difficulties in highly coupled, flow-dominant problems such as those dealing with 
turbulence, phase change and chemical reaction. This strategy, therefore, received no further 
consideration. 

6.4. Efect of increasing number of transport equations 

From profiling of the execution of both sequential and functional decomposition implementa- 
tions of the algorithm, it could be expected that solving for further dependent variables would 
lead to little increase in the parallel-code run-time while the sequential-code run-time would be 
expected to increase by about 27% of the current value for each additional variable (see Table I). 
There may be expected some increase in the parallel code run-time due to increased contention 
for the global lock used in the computer’s memory management scheme. This would lead to some 
decreases in the efficiency of the code and the degree to which it approaches the theoretical 
maximum speed-up given by Arndahl’s law. However, these conditions could not be expected to 
hold for systems where the number of dependent variables being solved approaches or exceeds 
the parallelism of the machine architecture. In the case of the number of variables exceeding the 
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Figure 10. Simulated speed-up for strategy 11 as a function of the number of dependent variables solved concurrently 

number of CPUs, even if only by one, it could be expected that the run-time would essentially 
double. 

To test these hypotheses, variants of the test problem were run in which the energy equation 
was solved a number of times within each iteration. In effect, this attempts to simulate problems 
which require the solution of a number of dependent scalar variables. Note that this simulation 
ignores possible degradation in convergence rates arising from any possible coupling between the 
scalar transport equations. This simulation of increasing the number of scalar transport equa- 
tions does, however, provide an estimate of the maximum speed-up which would be obtained 
using a functional decomposition strategy on problems governed by a large number of transport 
equations. The results of running these simulations are shown in Figure 10. 

From these results it can be seen that as the number of dependent variables solved increases, 
there is an approximately linear increase in the speed-up relative to the projected sequential 
run-time. This is to be expected as each additional transport equation is assigned to an idle CPU. 
When the number of variables reaches the number of CPUs available (eight in the case of the 
SGI28OS), there is a loss of speed-up due to contention with the system clock and accounting 
functions allocated to one of the CPUs. 

When the number of variables exceeds the number of CPUs, as expected, there is an approxim- 
ate halving of the speed-up obtained. However, as the number of variables is increased further, the 
speed-up continues to decrease. This was thought to be due to the simplistic code structure used 
initially, which allowed all the execution threads spawned, one for each variable, to contend for 
the available CPUs simultaneously. An explicit scheme for handling this situation, using two 
parallel sections one after the other on a lesser number of CPUs was implemented, to assist in 
achieving greater speed-ups and increased efficiency. The rearranged code structure is shown in 
Figure 11. 
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Figure 11. Code structure-two parallel sections, multiple variables 

A side-effect of this approach is that pressure correction, which must be performed after the 
u and u velocity calculations, can now be solved in the second parallel section. In effect, the 
additional transport equations are solved in parallel with the already sequentially solved pressure 
correction equation and, so, there is no significant impact on run-time from their inclusion. 
Reduced overheads from resource contention compensated for any impact there may have been. 
When the number of dependent variables exceeded 16, a third parallel section had to be added 
and a drop in speed-up was observed. 

6.5. Comparison of functional decomposition and loop-level parallelization results 

Figure 12 gives the run-times for each method for various numbers of transport equations. 
While the increase in run-time for the sequential and fine-grain parallel methods are basically 
linear in their increase, it may be noted that the coarse-grain method is starting the expected 
stepped increase. 

Figure 13 shows the corresponding speed-ups for the coarse and fine-grain parallelization 
methods. The staircase increase in run-time of the functional decomposition method seen at 17 
transport equations in Figure 12 gives rise to a sawtooth pattern of speed-up, which can be seen 
beginning in Figure 13. Note that the fine-grain loop-level parallelization method is better for 
problems involving only a few transport equations. As the number of transport equations 
becomes greater, the coarse-grain functional decomposition method shows less increase in 
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run-time than the fine-grain method. The crossover in speed-up between the two methods for the 
current implementations lies at about the five-transport-equation case. The position of this 
crossover might be expected to be related to problem size as the functional decomposition 
implementation suffers an effective message passing overhead in maintaining data integrity in 
memory. 

For the test problem, the maximum achievable speed-up given by Amdahl's law for the 
fine-grain parallel code was 4.74. So, the measured speed-up of 2.2 is only 46% of the theoretical 
maximum. This result would appear to indicate problems with the application of fine-grain 
parallelization to the particular test problem considered; so, care must be taken in drawing 
comparisons of the two parallelization methods. The loop parallelization is implemented as 
a single-master and multiple-slave execution threads. All execution threads perform part of the 
loop iterations but the master thread performs in addition serial portions of the code and certain 
parallelization scheduling. While the master thread is occupied with these latter tasks, the slave 
threads enter busy-wait states. The maximum variation in execution time between slave threads is 
1-7%, which would indicate that load balancing is not a significant factor in the poor parallel 
performance obtained. A decrease in the rate of convergence due to the less efficient solution 
algorithm adopted also affected speed-up. However, only about 5% more iterations were 
required to reach convergence, relative to the original algorithm. It would asppear that the 
dominant factor reducing speed-up in the problem analysed is the ratio of multiprocessing system 
overhead to user code in parallelized loops. 

As can be seen, the effect of increasing the number of transport equations in the fine-grain 
method was quite different from the response observed for the functional decomposition method. 
The speed-up measured increased slightly, as could be expected due to the incrementally greater 
portion of code in parallel sections. The remaining serial code sections, comprising such tasks as 
unsteady heat balance calculation and convergence testing, are essentially independent of the 
number of transport equations. Thus, these serial sections will decrease as a proportion of 
execution time as more transport equations are added to the parallel-code sections. The percent- 
age of the theoretical maximum speed-up achieved remained virtually constant. Figure 14 shows 
the relative parallel efficiencies of the coarse- and fine-grain methods. 

The dips in efficiency noticeable for the odd-number cases are due to one-child process spin- 
waiting for the entire period of the second parallel section, there being no work for it to do. For 
example. in the case involving the solution of 11 dependent variables concurrently, six CPUs are 
used. First six variables are solved and then five, allowing one CPU to idle. Similarly, for 13 
variables, seven CPUs are used, first solving seven variables and then solving the remaining six 
with one idle CPU consuming time in spin-wait (see Figure 15). 

The general trend down in the efficiency of the functional decomposition code for a given 
number of parallel sections is due to the increasing overheads in managing concurrent processes, 
particularly, memory management, In order to maintain independent data partitions, data arrays 
must be shared under global locks and significant overheads are generated by loading of local 
copies of data to individual child processes. 

The method of multiple parallel sections could be extended to cases of fewer dependent 
variables in order to use less processors. As this, in effect, makes the code more serial, there is 
a trade-off between parallel efficiency and speed-up obtainable. 

6.6. Experimentully determined seriul fraction 

To investigate further the relative performance of the different approaches, the serial-code 
fraction was experimentally derived, after the method of Karp and Flatt.15 This metric, a measure 
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Figure 14. Comparison of parallel efficiencies for functional decomposition and loop-level parallelization methods 

of the effective serial portion of the code, is shown in Figure 16. Since the effective serial fraction 
will limit the speed-up obtained, a lower value is better. From the formulation for the serial 
fraction, I; 

11s- l / n  f=-, 
1 - l / n  
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Figure 16. Comparison of experimentally derived serial fraction for functional decomposition and loop-level paralleliz- 
ation methods 

where s is the experimentally obtained speed-up and n the number of processors, it can be seen 
that this quantity is closely related to the percentage of the theoretical maximum speed-up 
already mentioned. It is, however, much easier to formulate, being derived entirely from experi- 
mentally obtained quantities, requiring no code analysis. The same features already discussed can 
be seen, in particular, the load-balancing peaks; in addition, the extent of the advantage gained by 
moving to double parallel sections is clearly visible. Care must be taken in interpretation of these 
results, since the sensitivity of this metric also means statistical variations in run-time, due to 
changing system overheads, load or cache usage, can be of the same order as those variations 
attributable to load-balancing effects. 

6.7. Effect of problem grid size and storage urray size 

All of the cases described were performed with a single computational mesh. The effect of 
increasing the number of control volumes was investigated very briefly. It was found that solving 
for more grid points had a greater effect on the coarse-grain method than the fine-grain method, 
with the result that the crossover point between the two methods seen in Figure 12 moved 
progressively to higher numbers of transport equations. 

The interpretation of this effect was complicated by the fact that due to the explicit memory 
management techniques required by the functional decomposition method, it suffered from 
a considerable overhead in handling larger arrays. Given a particular problem size, storage in 
larger arrays had little or no effect on the serial or fine-grain codes but increased the run-time of 
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the coarse-grain method significantly. This problem could be ameliorated by an alternative 
approach to maintaining data integrity. 

6.8. Memory usage 

All the parallelization strategies used more memory than the serial code, trading memory usage 
against processing speed. For the base test case, the serial code used approximately 400 kB, the 
functional decomposition code running on three processors used 2.6 MB, and the loop-level 
parallelized code running on eight processors used 6.4 MB. For the parallelized code, memory 
usage increased roughly as the number of code segments duplicated across processors. For 
problems of this size, it would appear that functional decomposition is the most memory- 
efficient method of increasing processor speed. 

7. CONCLUDING REMARKS 

It should be noted that all parallelization strategies will reflect problem dependencies. However, it 
has been shown that functional decomposition offers an easily implementable and effective 
alternative to code parallelization for certain classes of problems of industrial interest. The 
method is particularly effective for problems governed by a relatively large number of transport 
equations and its efficiency depends on matching machine and problem parallelism. Ease of 
implementation in the existing codes and maintenance of the inherent structure of the traditional 
serial algorithms are seen as the major advantages of this approach. In comparison with 
a fine-grain parallelization method, the coarse-grain functional decomposition method readily 
gave better speed-ups and efficiencies for cases with more than five independent transport 
equations, for similar or less programming effort. 

Further work is required to assess the effects of varying machine configuration and conver- 
gence rate degradation in complex problems in which coupling actually exists between many or 
all of the dependent variables. In this regard, the application of both loop level and functional 
decomposition strategies are presently being evaluated for a blast furnace model. A number of 
computer platforms, including both shared and distributed memory machines, are being studied. 
The primary aim of this work is to achieve rapid execution of the model on low-cost computer 
platforms to allow widespread on-site implementation of the model in ironmaking operations, 
Parallelization studies on other models, including three-dimensional casting models, are also 
being undertaken. 
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APPENDJX: NOMENCLATURE 

coefficients in the discretized energy equation 
porosity function for the momentum equations (see Reference 10) 
source term in the discretized energy equation 
specific heat 
experimentally determined serial fraction of the code 
serial code fraction 
parallel code fraction 
acceleration due io gravity 
thermal conductivity 
number of processors used 
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effective pressure 
pressure correction 
experimentally obtained code execution speed-up 
source term for governing transport equation 
source term for energy equation in terms of temperature 
source term for u momentum equation 
source term for u momentum equation 
time 
parallel run-time 
sequential run-time 
temperature 
velocity vector 
velocity components in x and y directions 
co-ordinates 
length of rectangular cavity 
height of rectangular cavity 
volumetric coefficient of thermal expansion 
nodal latent heat 
diffusion coefficient for governing transport equation 
dynamic viscosity 
density 
generalized dependent variable 

Subscripts 

nb neighbouring node points 
n, s, e, w 
1 

ref reference conditions 

co-ordinate directed neighbouring node points 
ith node point or control volume 

Superscript 
* values at previoui iteration 
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